Elligator

Chris Froeschl

Definition 1 Legendre Symbol χ
#

Define \(\chi : \text{F}_q \to \text{F}_q\) by \(\chi (a) = a^{(q - 1) / 2}\) with a prime power \(q \equiv 3 \pmod{4}\).

The function \(\chi \) is called a \(\textbf{quadratic character}\).

Definition 2 Decoding Function Variable c
#

Let \(q\) be a prime power congruent to \(3\) modulo \(4\). Let \(s\) be a nonzero element of \(\text{F}_q\) with \((s^2 - 2) (s^2 + 2) \neq 0\).

Define \(c = 2 / s^2\).

Theorem 3 c Property
#

In the situation of the definition of \(c\).

Then \(c (c - 1) (c + 1) \neq 0\).

Proof

TODO

Definition 4 Decoding Function Variable r
#

In the situation of the definition of \(c\).

Define \(r = c + 1 / c\).

Theorem 5 r nonzero
#

In the situation of the definition of \(r\).

Then \(r \neq 0\).

Proof

TODO

Definition 6 Decoding Function Variable d
#

In the situation of the definition of \(c\).

Define \(d = - (c + 1)^2 / (c - 1)^2\).

Theorem 7 d nonsquare
#

In the situation of the definition of \(d\).

Then \(d\) is not a square.

Proof

TODO

Definition 8 Decoding Function Variable u
#

Let \(t \in \text{F}_q \setminus \{ \pm 1 \} \).

Define \(u = (1 - t) / (1 + t)\).

Theorem 9 u nonzero
#

In the situation of the definition of \(u\).

Then \(u \neq 0\).

Proof

TODO

Theorem 10 u defined
#

In the situation of the definition of \(u\).

Then \(u\) is defined.

Proof

TODO

Definition 11 Decoding Function Variable v
#

In the situation of the definitions of \(u\) and \(r\). Let \(t \in \text{F}_q \setminus \{ \pm 1 \} \).

Define \(v = u^5 + (r^2 - 2) u^3 + u\).

Proof

TODO

Theorem 12 v nonzero
#

In the situation of the definition of \(v\).

Then \(v \neq 0\).

Proof

TODO

Definition 13 Decoding Function Variable X
#

In the situation of the definitions of \(u\) and \(v\). Let \(t \in \text{F}_q \setminus \{ \pm 1 \} \).

Define \(X = \chi (v) u\).

Proof

TODO

Theorem 14 X nonzero
#

In the situation of the definition of \(X\).

Then \(X \neq 0\).

Proof

TODO

Definition 15 Decoding Function Variable Y

In the situation of the definitions of \(c\), \(u\) and \(v\). Let \(q\) be a prime power congruent to \(3\) modulo \(4\). Let \(t \in \text{F}_q \setminus \{ \pm 1 \} \).

Define \(Y = ( \chi (v) v )^{(q + 1) / 4} \chi ( v ) \chi (u^2 + 1 / c^2)\).

Theorem 16 Y nonzero
#

In the situation of the definition of \(Y\).

Then \(Y \neq 0\).

Proof

TODO

Definition 17 Decoding Function Variable x
#

In the situation of the definitions of \(c\), \(X\), \(s\) and \(Y\). Let \(q\) be a prime power congruent to \(3\) modulo \(4\). Let \(t \in \text{F}_q \setminus \{ \pm 1 \} \).

Define \(x = (c - 1) s X (1 + X) / Y\).

Theorem 18 x defined
#

In the situation of the definition of \(x\).

Then \(x\) is defined.

Proof

TODO

Theorem 19 x nonzero
#

In the situation of the definition of \(x\).

Then \(x \neq 0\).

Proof

TODO

Definition 20 Decoding Function Variable y
#

In the situation of the definitions of \(r\) and \(X\). Let \(q\) be a prime power congruent to \(3\) modulo \(4\). Let \(t \in \text{F}_q \setminus \{ \pm 1 \} \).

Define \(y = (r X - (1 + X)^2) / (r X + (1 + X)^2)\).

Theorem 21 y defined
#

In the situation of the definition of \(y\).

Then \(y\) is defined.

Proof

TODO

Theorem 22 y + 1nonzero
#

In the situation of the definition of \(y\).

Then \(y \neq 0\).

Proof

TODO

Theorem 23 Variables Product nonzero

In the situation of the definitions of \(u\), \(v\), \(X\), \(Y\), \(x\) and \(y\).

Then \(uvXYx (y + 1) \neq 0\).

Proof

TODO

Theorem 24 Decoding Function Variables fulfill Specific Equation

In the situation of the definitions of \(X\), \(Y\) and \(r\).

Then \(Y^2 = X^5 + (r^2 - 2) X^3 + X\).

Proof

TODO

Theorem 25 Decoding Function Variables fulfill Curve Equation

In the situation of the definitions of \(x\), \(y\) and \(d\).

Then \(x^2 + y^2 = 1 + d x^2 y^2\).

Proof

TODO

Definition 26 Decoding Function ϕ
#

In the situation of Theorem 1, the decoding function for the complete Edwards Curve \(E : x^2 + y^2 = 1 + d x^2 y^2\) is the function \(\phi : \text{F}_q \to E(\text{F}_q)\) defined as follows:

\(\phi (\pm 1) = (0, 1)\); \(\text{if } t \notin \{ \pm 1\} , \quad \text{then} \quad \phi (t) = (x, y)\).

Theorem 27 Preimages of ϕ

TODO

Proof

TODO

Definition 28 Elliptic Curve over Finite Field
#

TODO

Definition 29 ϕ(F sub q) Property 1
#

TODO

Definition 30 Inverted Map Variable η
#

TODO

Definition 31 ϕ(F sub q) Property 2

TODO

Definition 32 ϕ(F sub q) Property 3

TODO

Definition 33 Inverted Map Set ϕ(F sub q)

TODO

Theorem 34 Point on Curve fulfilling properties also in ϕ(F sub q)

TODO

Proof

TODO

Definition 35 Inverted Map Variable X2
#

TODO

Theorem 36 X2 defined
#

TODO

Proof

TODO

Definition 37 Inverted Map Variable z

TODO

Theorem 38 z defined
#

TODO

Proof

TODO

Definition 39 Inverted Map Variable u2
#

TODO

Theorem 40 z defined
#

TODO

Proof

TODO

Definition 41 Inverted Map Variable t2
#

TODO

Theorem 42 t2 defined
#

TODO

Proof

TODO

Theorem 43 Inverted Map Point to Representative

TODO

Proof

TODO

Definition 44 Binary Digits b
#

TODO

Definition 45 Set of Potential Representatives S
#

TODO

Definition 46 Binary to Natural Number Function σ
#

TODO

Definition 47 Injective Map ι
#

TODO

Theorem 48 Cardinality of S
#

TODO

Theorem 49 ι is Injective Map
#

TODO

Definition 50 Set ι of S
#

TODO

Theorem 51 ι(S) equals ϕ(F sub q)
#

TODO