theorem
FiniteFieldBasic.q_ne_two
(q : ℕ)
(q_prime_power : IsPrimePow q)
(q_mod_4_congruent_3 : q % 4 = 3)
:
theorem
FiniteFieldBasic.q_odd
{F : Type u_1}
[Field F]
[Fintype F]
(q : ℕ)
(field_cardinality : Fintype.card F = q)
(q_prime_power : IsPrimePow q)
(q_mod_4_congruent_3 : q % 4 = 3)
:
Odd (Fintype.card F)
theorem
FiniteFieldBasic.q_add_one_even
{F : Type u_1}
[Field F]
[Fintype F]
(q : ℕ)
(field_cardinality : Fintype.card F = q)
(q_prime_power : IsPrimePow q)
(q_mod_4_congruent_3 : q % 4 = 3)
:
theorem
FiniteFieldBasic.q_sub_one_even
{F : Type u_1}
[Field F]
[Fintype F]
(q : ℕ)
(field_cardinality : Fintype.card F = q)
(q_prime_power : IsPrimePow q)
(q_mod_4_congruent_3 : q % 4 = 3)
:
Even (Fintype.card F - 1)
theorem
FiniteFieldBasic.q_not_dvd_two
{F : Type u_1}
[Field F]
[Fintype F]
(q : ℕ)
(field_cardinality : Fintype.card F = q)
(q_prime_power : IsPrimePow q)
(q_mod_4_congruent_3 : q % 4 = 3)
:
theorem
FiniteFieldBasic.two_ne_zero
{F : Type u_1}
[Field F]
[Fintype F]
(q : ℕ)
(field_cardinality : Fintype.card F = q)
(q_prime_power : IsPrimePow q)
(q_mod_4_congruent_3 : q % 4 = 3)
:
theorem
FiniteFieldBasic.neg_one_ne_zero
{F : Type u_1}
[Field F]
[Fintype F]
(q : ℕ)
(field_cardinality : Fintype.card F = q)
(q_prime_power : IsPrimePow q)
(q_mod_4_congruent_3 : q % 4 = 3)
:
theorem
FiniteFieldBasic.neg_one_non_square
{F : Type u_1}
[Field F]
[Fintype F]
(q : ℕ)
(field_cardinality : Fintype.card F = q)
(q_prime_power : IsPrimePow q)
(q_mod_4_congruent_3 : q % 4 = 3)
:
theorem
FiniteFieldBasic.q_sub_one_over_two_ne_zero
{F : Type u_1}
[Field F]
[Fintype F]
(q : ℕ)
(field_cardinality : Fintype.card F = q)
(q_prime_power : IsPrimePow q)
(q_mod_4_congruent_3 : q % 4 = 3)
: