Documentation

Elligator.FiniteFieldBasic

theorem FiniteFieldBasic.q_ne_two (q : ) (q_prime_power : IsPrimePow q) (q_mod_4_congruent_3 : q % 4 = 3) :
q 2
theorem FiniteFieldBasic.q_odd {F : Type u_1} [Field F] [Fintype F] (q : ) (field_cardinality : Fintype.card F = q) (q_prime_power : IsPrimePow q) (q_mod_4_congruent_3 : q % 4 = 3) :
theorem FiniteFieldBasic.q_add_one_even {F : Type u_1} [Field F] [Fintype F] (q : ) (field_cardinality : Fintype.card F = q) (q_prime_power : IsPrimePow q) (q_mod_4_congruent_3 : q % 4 = 3) :
Even (q + 1)
theorem FiniteFieldBasic.q_sub_one_even {F : Type u_1} [Field F] [Fintype F] (q : ) (field_cardinality : Fintype.card F = q) (q_prime_power : IsPrimePow q) (q_mod_4_congruent_3 : q % 4 = 3) :
theorem FiniteFieldBasic.q_not_dvd_two {F : Type u_1} [Field F] [Fintype F] (q : ) (field_cardinality : Fintype.card F = q) (q_prime_power : IsPrimePow q) (q_mod_4_congruent_3 : q % 4 = 3) :
¬q 2
theorem FiniteFieldBasic.two_ne_zero {F : Type u_1} [Field F] [Fintype F] (q : ) (field_cardinality : Fintype.card F = q) (q_prime_power : IsPrimePow q) (q_mod_4_congruent_3 : q % 4 = 3) :
2 0
theorem FiniteFieldBasic.neg_one_ne_zero {F : Type u_1} [Field F] [Fintype F] (q : ) (field_cardinality : Fintype.card F = q) (q_prime_power : IsPrimePow q) (q_mod_4_congruent_3 : q % 4 = 3) :
-1 0
theorem FiniteFieldBasic.neg_one_non_square {F : Type u_1} [Field F] [Fintype F] (q : ) (field_cardinality : Fintype.card F = q) (q_prime_power : IsPrimePow q) (q_mod_4_congruent_3 : q % 4 = 3) :
theorem FiniteFieldBasic.q_sub_one_over_two_ne_zero {F : Type u_1} [Field F] [Fintype F] (q : ) (field_cardinality : Fintype.card F = q) (q_prime_power : IsPrimePow q) (q_mod_4_congruent_3 : q % 4 = 3) :
(q - 1) / 2 0