Documentation

Mathlib.CategoryTheory.Localization.CalculusOfFractions.OfAdjunction

The calculus of fractions deduced from an adjunction #

If G ⊣ F is an adjunction, F is fully faithful, and W is a class of morphisms that is inverted by G and such that the morphism adj.unit.app X belongs to W for any object X, then G is a localization functor with respect to W. Moreover, if W is multiplicative, then W has a calculus of left fractions. This holds in particular if W is the inverse image of the class of isomorphisms by G.

(The dual statement is also obtained.)

theorem CategoryTheory.Adjunction.hasLeftCalculusOfFractions {C₁ : Type u_1} {C₂ : Type u_2} [Category.{u_3, u_1} C₁] [Category.{u_4, u_2} C₂] {G : Functor C₁ C₂} {F : Functor C₂ C₁} (adj : G F) (W : MorphismProperty C₁) [W.IsMultiplicative] (hW : W.IsInvertedBy G) (hW' : W.functorCategory C₁ adj.unit) :
theorem CategoryTheory.Adjunction.hasRightCalculusOfFractions {C₁ : Type u_1} {C₂ : Type u_2} [Category.{u_4, u_1} C₁] [Category.{u_3, u_2} C₂] {G : Functor C₁ C₂} {F : Functor C₂ C₁} (adj : F G) (W : MorphismProperty C₁) [W.IsMultiplicative] (hW : W.IsInvertedBy G) (hW' : W.functorCategory C₁ adj.counit) :
theorem CategoryTheory.Adjunction.isLocalization_leftAdjoint {C₁ : Type u_1} {C₂ : Type u_2} [Category.{u_3, u_1} C₁] [Category.{u_4, u_2} C₂] {G : Functor C₁ C₂} {F : Functor C₂ C₁} [F.Full] [F.Faithful] (adj : G F) (W : MorphismProperty C₁) (hW : W.IsInvertedBy G) (hW' : W.functorCategory C₁ adj.unit) :
theorem CategoryTheory.Adjunction.isLocalization_rightAdjoint {C₁ : Type u_1} {C₂ : Type u_2} [Category.{u_4, u_1} C₁] [Category.{u_3, u_2} C₂] {G : Functor C₁ C₂} {F : Functor C₂ C₁} [F.Full] [F.Faithful] (adj : F G) (W : MorphismProperty C₁) (hW : W.IsInvertedBy G) (hW' : W.functorCategory C₁ adj.counit) :
theorem CategoryTheory.Adjunction.isLocalization_leftAdjoint' {C₁ : Type u_1} {C₂ : Type u_2} [Category.{u_3, u_1} C₁] [Category.{u_4, u_2} C₂] {G : Functor C₁ C₂} {F : Functor C₂ C₁} [F.Full] [F.Faithful] (adj : G F) :