Documentation

Mathlib.CategoryTheory.Monoidal.Action.LinearFunctor

Functors that are linear with respect to an action #

Given a monoidal category C acting on the left or on the right on categories D and D', we introduce the following typeclasses on functors F : D ⥤ D' to express compatibility of F with the action of C:

F.LaxLinear C equips F : D ⥤ D' with a family of morphisms μₗ F : ∀ (c : C) (d : D), c ⊙ₗ F.obj d ⟶ F.obj (c ⊙ₗ d) that is natural in each variable and coherent with respect to left actions of C on D and D'.

Instances

    F.OplaxLinear C equips F : D ⥤ D' with a family of morphisms δₗ F : ∀ (c : C) (d : D), c ⊙ₗ F.obj d ⟶ F.obj (c ⊙ₗ d) that is natural in each variable and coherent with respect to left actions of C on D and D'.

    Instances

      F.LeftLinear C asserts that F is both lax and oplax left-linear, in a compatible way, i.e that μₗ is inverse to δₗ.

      Instances
        @[simp]
        theorem CategoryTheory.Functor.LeftLinear.μₗ_comp_δₗ_assoc {D : Type u_1} {D' : Type u_2} {inst✝ : Category.{u_4, u_1} D} {inst✝¹ : Category.{u_5, u_2} D'} (F : Functor D D') {C : Type u_3} {inst✝² : Category.{u_6, u_3} C} {inst✝³ : MonoidalCategory C} {inst✝⁴ : MonoidalCategory.MonoidalLeftAction C D} {inst✝⁵ : MonoidalCategory.MonoidalLeftAction C D'} [self : F.LeftLinear C] (c : C) (d : D) {Z : D'} (h : MonoidalCategory.MonoidalLeftActionStruct.actionObj c (F.obj d) Z) :
        @[simp]
        theorem CategoryTheory.Functor.LeftLinear.δₗ_comp_μₗ_assoc {D : Type u_1} {D' : Type u_2} {inst✝ : Category.{u_4, u_1} D} {inst✝¹ : Category.{u_5, u_2} D'} (F : Functor D D') {C : Type u_3} {inst✝² : Category.{u_6, u_3} C} {inst✝³ : MonoidalCategory C} {inst✝⁴ : MonoidalCategory.MonoidalLeftAction C D} {inst✝⁵ : MonoidalCategory.MonoidalLeftAction C D'} [self : F.LeftLinear C] (c : C) (d : D) {Z : D'} (h : F.obj (MonoidalCategory.MonoidalLeftActionStruct.actionObj c d) Z) :
        @[reducible, inline]

        A shorthand to bundle the μₗ as an isomorphism

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          F.LaxLinear C equips F : D ⥤ D' with a family of morphisms μₗ F : ∀ (c : C) (d : D), c ⊙ₗ F.obj d ⟶ F.obj (c ⊙ₗ d) that is natural in each variable and coherent with respect to left actions of C on D and D'.

          Instances

            F.OplaxLinear C equips F : D ⥤ D' with a family of morphisms δₗ F : ∀ (c : C) (d : D), c ⊙ₗ F.obj d ⟶ F.obj (c ⊙ₗ d) that is natural in each variable and coherent with respect to left actions of C on D and D'.

            Instances

              F.RightLinear C asserts that F is both lax and oplax left-linear, in a compatible way, i.e that μᵣ is inverse to δᵣ.

              Instances
                @[simp]
                theorem CategoryTheory.Functor.RightLinear.μᵣ_comp_δᵣ_assoc {D : Type u_1} {D' : Type u_2} {inst✝ : Category.{u_4, u_1} D} {inst✝¹ : Category.{u_5, u_2} D'} (F : Functor D D') {C : Type u_3} {inst✝² : Category.{u_6, u_3} C} {inst✝³ : MonoidalCategory C} {inst✝⁴ : MonoidalCategory.MonoidalRightAction C D} {inst✝⁵ : MonoidalCategory.MonoidalRightAction C D'} [self : F.RightLinear C] (d : D) (c : C) {Z : D'} (h : MonoidalCategory.MonoidalRightActionStruct.actionObj (F.obj d) c Z) :
                @[simp]
                theorem CategoryTheory.Functor.RightLinear.δᵣ_comp_μᵣ_assoc {D : Type u_1} {D' : Type u_2} {inst✝ : Category.{u_4, u_1} D} {inst✝¹ : Category.{u_5, u_2} D'} (F : Functor D D') {C : Type u_3} {inst✝² : Category.{u_6, u_3} C} {inst✝³ : MonoidalCategory C} {inst✝⁴ : MonoidalCategory.MonoidalRightAction C D} {inst✝⁵ : MonoidalCategory.MonoidalRightAction C D'} [self : F.RightLinear C] (d : D) (c : C) {Z : D'} (h : F.obj (MonoidalCategory.MonoidalRightActionStruct.actionObj d c) Z) :
                @[reducible, inline]

                A shorthand to bundle the μᵣ as an isomorphism

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For