Functoriality of group cohomology #
Given a commutative ring k
, a group homomorphism f : G →* H
, a k
-linear H
-representation
A
, a k
-linear G
-representation B
, and a representation morphism Res(f)(A) ⟶ B
, we get
a cochain map inhomogeneousCochains A ⟶ inhomogeneousCochains B
and hence maps on
cohomology Hⁿ(H, A) ⟶ Hⁿ(G, B)
.
We also provide extra API for these maps in degrees 0, 1, 2.
Main definitions #
groupCohomology.cochainsMap f φ
is the mapinhomogeneousCochains A ⟶ inhomogeneousCochains B
induced by a group homomorphismf : G →* H
and a representation morphismφ : Res(f)(A) ⟶ B
.groupCohomology.map f φ n
is the mapHⁿ(H, A) ⟶ Hⁿ(G, B)
induced by a group homomorphismf : G →* H
and a representation morphismφ : Res(f)(A) ⟶ B
.groupCohomology.H1InfRes A S
is the short complexH¹(G ⧸ S, A^S) ⟶ H¹(G, A) ⟶ H¹(S, A)
for a normal subgroupS ≤ G
and aG
-representationA
.
Given a group homomorphism f : G →* H
and a representation morphism φ : Res(f)(A) ⟶ B
,
this is the chain map sending x : Hⁿ → A
to (g : Gⁿ) ↦ φ (x (f ∘ g))
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Given a group homomorphism f : G →* H
and a representation morphism φ : Res(f)(A) ⟶ B
,
this is the induced map Zⁿ(H, A) ⟶ Zⁿ(G, B)
sending x : Hⁿ → A
to
(g : Gⁿ) ↦ φ (x (f ∘ g))
.
Equations
Instances For
Given a group homomorphism f : G →* H
and a representation morphism φ : Res(f)(A) ⟶ B
,
this is the induced map Hⁿ(H, A) ⟶ Hⁿ(G, B)
sending x : Hⁿ → A
to
(g : Gⁿ) ↦ φ (x (f ∘ g))
.
Equations
Instances For
Given a group homomorphism f : G →* H
and a representation morphism φ : Res(f)(A) ⟶ B
,
this is the induced map sending x : H → A
to (g : G) ↦ φ (x (f g))
.
Equations
- groupCohomology.f₁ f φ = ModuleCat.ofHom ((ModuleCat.Hom.hom φ.hom).compLeft G ∘ₗ LinearMap.funLeft k ↑A.V ⇑f)
Instances For
Alias of groupCohomology.f₁
.
Given a group homomorphism f : G →* H
and a representation morphism φ : Res(f)(A) ⟶ B
,
this is the induced map sending x : H → A
to (g : G) ↦ φ (x (f g))
.
Equations
Instances For
Given a group homomorphism f : G →* H
and a representation morphism φ : Res(f)(A) ⟶ B
,
this is the induced map sending x : H × H → A
to (g₁, g₂ : G × G) ↦ φ (x (f g₁, f g₂))
.
Equations
- groupCohomology.f₂ f φ = ModuleCat.ofHom ((ModuleCat.Hom.hom φ.hom).compLeft (G × G) ∘ₗ LinearMap.funLeft k (↑A.V) (Prod.map ⇑f ⇑f))
Instances For
Alias of groupCohomology.f₂
.
Given a group homomorphism f : G →* H
and a representation morphism φ : Res(f)(A) ⟶ B
,
this is the induced map sending x : H × H → A
to (g₁, g₂ : G × G) ↦ φ (x (f g₁, f g₂))
.
Equations
Instances For
Given a group homomorphism f : G →* H
and a representation morphism φ : Res(f)(A) ⟶ B
,
this is the induced map sending x : H × H × H → A
to
(g₁, g₂, g₃ : G × G × G) ↦ φ (x (f g₁, f g₂, f g₃))
.
Equations
- groupCohomology.f₃ f φ = ModuleCat.ofHom ((ModuleCat.Hom.hom φ.hom).compLeft (G × G × G) ∘ₗ LinearMap.funLeft k (↑A.V) (Prod.map (⇑f) (Prod.map ⇑f ⇑f)))
Instances For
Alias of groupCohomology.f₃
.
Given a group homomorphism f : G →* H
and a representation morphism φ : Res(f)(A) ⟶ B
,
this is the induced map sending x : H × H × H → A
to
(g₁, g₂, g₃ : G × G × G) ↦ φ (x (f g₁, f g₂, f g₃))
.
Equations
Instances For
Alias of groupCohomology.cochainsMap_f_1_comp_cochainsIso₁
.
Alias of groupCohomology.cochainsMap_f_2_comp_cochainsIso₂
.
Alias of groupCohomology.cochainsMap_f_3_comp_cochainsIso₃
.
Given a group homomorphism f : G →* H
and a representation morphism φ : Res(f)(A) ⟶ B
,
this is induced map Aᴴ ⟶ Bᴳ
.
Equations
Instances For
Alias of groupCohomology.map_id
.
Alias of groupCohomology.map_comp
.
Alias of groupCohomology.map_id_comp
.
Alias of groupCohomology.map_H0Iso_hom_f
.
Alias of groupCohomology.map_id_comp_H0Iso_hom
.
Alias of groupCohomology.mono_map_0_of_mono
.
Alias of groupCohomology.cocyclesMap_cocyclesIso₀_hom_f
.
Given a group homomorphism f : G →* H
and a representation morphism φ : Res(f)(A) ⟶ B
,
this is the induced map from the short complex A --d₀₁--> Fun(H, A) --d₁₂--> Fun(H × H, A)
to B --d₀₁--> Fun(G, B) --d₁₂--> Fun(G × G, B)
.
Equations
- groupCohomology.mapShortComplexH1 f φ = { τ₁ := φ.hom, τ₂ := groupCohomology.f₁ f φ, τ₃ := groupCohomology.f₂ f φ, comm₁₂ := ⋯, comm₂₃ := ⋯ }
Instances For
Given a group homomorphism f : G →* H
and a representation morphism φ : Res(f)(A) ⟶ B
,
this is induced map Z¹(H, A) ⟶ Z¹(G, B)
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Alias of groupCohomology.mapCocycles₁
.
Given a group homomorphism f : G →* H
and a representation morphism φ : Res(f)(A) ⟶ B
,
this is induced map Z¹(H, A) ⟶ Z¹(G, B)
.
Instances For
Alias of groupCohomology.mapCocycles₁_comp_i
.
Alias of groupCohomology.coe_mapCocycles₁
.
Alias of groupCohomology.mapCocycles₁_comp_i
.
Alias of groupCohomology.mapCocycles₁_comp_i
.
Alias of groupCohomology.mapCocycles₁_one
.
Given a group homomorphism f : G →* H
and a representation morphism φ : Res(f)(A) ⟶ B
,
this is induced map H¹(H, A) ⟶ H¹(G, B)
.
Equations
Instances For
Alias of groupCohomology.map_id
.
Alias of groupCohomology.map_comp
.
Alias of groupCohomology.map_id_comp
.
Alias of groupCohomology.H1π_comp_map
.
Alias of groupCohomology.map_1_one
.
Given a group homomorphism f : G →* H
and a representation morphism φ : Res(f)(A) ⟶ B
,
this is the induced map from the short complex
Fun(H, A) --d₁₂--> Fun(H × H, A) --d₂₃--> Fun(H × H × H, A)
to
Fun(G, B) --d₁₂--> Fun(G × G, B) --d₂₃--> Fun(G × G × G, B)
.
Equations
- groupCohomology.mapShortComplexH2 f φ = { τ₁ := groupCohomology.f₁ f φ, τ₂ := groupCohomology.f₂ f φ, τ₃ := groupCohomology.f₃ f φ, comm₁₂ := ⋯, comm₂₃ := ⋯ }
Instances For
Given a group homomorphism f : G →* H
and a representation morphism φ : Res(f)(A) ⟶ B
,
this is induced map Z²(H, A) ⟶ Z²(G, B)
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Alias of groupCohomology.mapCocycles₂
.
Given a group homomorphism f : G →* H
and a representation morphism φ : Res(f)(A) ⟶ B
,
this is induced map Z²(H, A) ⟶ Z²(G, B)
.
Instances For
Alias of groupCohomology.mapCocycles₂_comp_i
.
Alias of groupCohomology.coe_mapCocycles₂
.
Alias of groupCohomology.mapCocycles₂_comp_i
.
Alias of groupCohomology.mapCocycles₂_comp_i
.
Given a group homomorphism f : G →* H
and a representation morphism φ : Res(f)(A) ⟶ B
,
this is induced map H²(H, A) ⟶ H²(G, B)
.
Equations
Instances For
Alias of groupCohomology.map_id
.
Alias of groupCohomology.map_comp
.
Alias of groupCohomology.map_id_comp
.
Alias of groupCohomology.H2π_comp_map
.
The functor sending a representation to its complex of inhomogeneous cochains.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The functor sending a G
-representation A
to Hⁿ(G, A)
.
Equations
- One or more equations did not get rendered due to their size.