Documentation

Mathlib.RepresentationTheory.Homological.GroupCohomology.Functoriality

Functoriality of group cohomology #

Given a commutative ring k, a group homomorphism f : G →* H, a k-linear H-representation A, a k-linear G-representation B, and a representation morphism Res(f)(A) ⟶ B, we get a cochain map inhomogeneousCochains A ⟶ inhomogeneousCochains B and hence maps on cohomology Hⁿ(H, A) ⟶ Hⁿ(G, B). We also provide extra API for these maps in degrees 0, 1, 2.

Main definitions #

theorem groupCohomology.congr {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} {f₁ f₂ : G →* H} (h : f₁ = f₂) {φ : (Action.res (ModuleCat k) f₁).obj A B} {T : Type u_1} (F : (f : G →* H) → ((Action.res (ModuleCat k) f).obj A B) → T) :
F f₁ φ = F f₂ (h φ)
noncomputable def groupCohomology.cochainsMap {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :

Given a group homomorphism f : G →* H and a representation morphism φ : Res(f)(A) ⟶ B, this is the chain map sending x : Hⁿ → A to (g : Gⁿ) ↦ φ (x (f ∘ g)).

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem groupCohomology.cochainsMap_f {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (i : ) :
    theorem groupCohomology.cochainsMap_f_hom {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (i : ) :
    ModuleCat.Hom.hom ((cochainsMap f φ).f i) = (ModuleCat.Hom.hom φ.hom).compLeft (Fin iG) ∘ₗ LinearMap.funLeft k A.V fun (x : Fin iG) => f x
    @[simp]
    @[deprecated groupCohomology.cochainsMap_id_f_hom_eq_compLeft (since := "2025-06-11")]
    theorem groupCohomology.cochainsMap_id_f_eq_compLeft {k G : Type u} [CommRing k] [Group G] {A B : Rep k G} (f : A B) (i : ) :

    Alias of groupCohomology.cochainsMap_id_f_hom_eq_compLeft.

    theorem groupCohomology.cochainsMap_comp {k : Type u} [CommRing k] {G H K : Type u} [Group G] [Group H] [Group K] {A : Rep k K} {B : Rep k H} {C : Rep k G} (f : H →* K) (g : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (ψ : (Action.res (ModuleCat k) g).obj B C) :
    @[simp]
    theorem groupCohomology.cochainsMap_zero {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) :
    theorem groupCohomology.cochainsMap_f_map_mono {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (hf : Function.Surjective f) [CategoryTheory.Mono φ] (i : ) :
    theorem groupCohomology.cochainsMap_f_map_epi {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (hf : Function.Injective f) [CategoryTheory.Epi φ] (i : ) :
    @[reducible, inline]
    noncomputable abbrev groupCohomology.cocyclesMap {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (n : ) :

    Given a group homomorphism f : G →* H and a representation morphism φ : Res(f)(A) ⟶ B, this is the induced map Zⁿ(H, A) ⟶ Zⁿ(G, B) sending x : Hⁿ → A to (g : Gⁿ) ↦ φ (x (f ∘ g)).

    Equations
    Instances For
      theorem groupCohomology.cocyclesMap_comp {k : Type u} [CommRing k] {G H K : Type u} [Group G] [Group H] [Group K] {A : Rep k K} {B : Rep k H} {C : Rep k G} (f : H →* K) (g : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (ψ : (Action.res (ModuleCat k) g).obj B C) (n : ) :
      theorem groupCohomology.cocyclesMap_comp_assoc {k : Type u} [CommRing k] {G H K : Type u} [Group G] [Group H] [Group K] {A : Rep k K} {B : Rep k H} {C : Rep k G} (f : H →* K) (g : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (ψ : (Action.res (ModuleCat k) g).obj B C) (n : ) {Z : ModuleCat k} (h : cocycles C n Z) :
      @[reducible, inline]
      noncomputable abbrev groupCohomology.map {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (n : ) :

      Given a group homomorphism f : G →* H and a representation morphism φ : Res(f)(A) ⟶ B, this is the induced map Hⁿ(H, A) ⟶ Hⁿ(G, B) sending x : Hⁿ → A to (g : Gⁿ) ↦ φ (x (f ∘ g)).

      Equations
      Instances For
        theorem groupCohomology.π_map {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (n : ) :
        theorem groupCohomology.map_comp {k : Type u} [CommRing k] {G H K : Type u} [Group G] [Group H] [Group K] {A : Rep k K} {B : Rep k H} {C : Rep k G} (f : H →* K) (g : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (ψ : (Action.res (ModuleCat k) g).obj B C) (n : ) :
        theorem groupCohomology.map_comp_assoc {k : Type u} [CommRing k] {G H K : Type u} [Group G] [Group H] [Group K] {A : Rep k K} {B : Rep k H} {C : Rep k G} (f : H →* K) (g : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (ψ : (Action.res (ModuleCat k) g).obj B C) (n : ) {Z : ModuleCat k} (h : groupCohomology C n Z) :
        theorem groupCohomology.map_id_comp {k G : Type u} [CommRing k] [Group G] {A B C : Rep k G} (φ : A B) (ψ : B C) (n : ) :
        @[reducible, inline]
        noncomputable abbrev groupCohomology.f₁ {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :
        ModuleCat.of k (HA.V) ModuleCat.of k (GB.V)

        Given a group homomorphism f : G →* H and a representation morphism φ : Res(f)(A) ⟶ B, this is the induced map sending x : H → A to (g : G) ↦ φ (x (f g)).

        Equations
        Instances For
          @[deprecated groupCohomology.f₁ (since := "2025-06-25")]
          def groupCohomology.fOne {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :
          ModuleCat.of k (HA.V) ModuleCat.of k (GB.V)

          Alias of groupCohomology.f₁.


          Given a group homomorphism f : G →* H and a representation morphism φ : Res(f)(A) ⟶ B, this is the induced map sending x : H → A to (g : G) ↦ φ (x (f g)).

          Equations
          Instances For
            @[reducible, inline]
            noncomputable abbrev groupCohomology.f₂ {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :
            ModuleCat.of k (H × HA.V) ModuleCat.of k (G × GB.V)

            Given a group homomorphism f : G →* H and a representation morphism φ : Res(f)(A) ⟶ B, this is the induced map sending x : H × H → A to (g₁, g₂ : G × G) ↦ φ (x (f g₁, f g₂)).

            Equations
            Instances For
              @[deprecated groupCohomology.f₂ (since := "2025-06-25")]
              def groupCohomology.fTwo {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :
              ModuleCat.of k (H × HA.V) ModuleCat.of k (G × GB.V)

              Alias of groupCohomology.f₂.


              Given a group homomorphism f : G →* H and a representation morphism φ : Res(f)(A) ⟶ B, this is the induced map sending x : H × H → A to (g₁, g₂ : G × G) ↦ φ (x (f g₁, f g₂)).

              Equations
              Instances For
                @[reducible, inline]
                noncomputable abbrev groupCohomology.f₃ {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :
                ModuleCat.of k (H × H × HA.V) ModuleCat.of k (G × G × GB.V)

                Given a group homomorphism f : G →* H and a representation morphism φ : Res(f)(A) ⟶ B, this is the induced map sending x : H × H × H → A to (g₁, g₂, g₃ : G × G × G) ↦ φ (x (f g₁, f g₂, f g₃)).

                Equations
                Instances For
                  @[deprecated groupCohomology.f₃ (since := "2025-06-25")]
                  def groupCohomology.fThree {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :
                  ModuleCat.of k (H × H × HA.V) ModuleCat.of k (G × G × GB.V)

                  Alias of groupCohomology.f₃.


                  Given a group homomorphism f : G →* H and a representation morphism φ : Res(f)(A) ⟶ B, this is the induced map sending x : H × H × H → A to (g₁, g₂, g₃ : G × G × G) ↦ φ (x (f g₁, f g₂, f g₃)).

                  Equations
                  Instances For
                    @[deprecated groupCohomology.cochainsMap_f_0_comp_cochainsIso₀ (since := "2025-06-25")]

                    Alias of groupCohomology.cochainsMap_f_0_comp_cochainsIso₀.

                    @[deprecated groupCohomology.cochainsMap_f_0_comp_cochainsIso₀ (since := "2025-05-09")]

                    Alias of groupCohomology.cochainsMap_f_0_comp_cochainsIso₀.

                    @[deprecated groupCohomology.cochainsMap_f_1_comp_cochainsIso₁ (since := "2025-06-25")]

                    Alias of groupCohomology.cochainsMap_f_1_comp_cochainsIso₁.

                    @[deprecated groupCohomology.cochainsMap_f_1_comp_oneCochainsIso (since := "2025-05-09")]

                    Alias of groupCohomology.cochainsMap_f_1_comp_cochainsIso₁.


                    Alias of groupCohomology.cochainsMap_f_1_comp_cochainsIso₁.

                    @[deprecated groupCohomology.cochainsMap_f_2_comp_cochainsIso₂ (since := "2025-06-25")]

                    Alias of groupCohomology.cochainsMap_f_2_comp_cochainsIso₂.

                    @[deprecated groupCohomology.cochainsMap_f_2_comp_twoCochainsIso (since := "2025-05-09")]

                    Alias of groupCohomology.cochainsMap_f_2_comp_cochainsIso₂.


                    Alias of groupCohomology.cochainsMap_f_2_comp_cochainsIso₂.

                    @[deprecated groupCohomology.cochainsMap_f_3_comp_cochainsIso₃ (since := "2025-06-25")]

                    Alias of groupCohomology.cochainsMap_f_3_comp_cochainsIso₃.

                    @[deprecated groupCohomology.cochainsMap_f_3_comp_threeCochainsIso (since := "2025-05-09")]

                    Alias of groupCohomology.cochainsMap_f_3_comp_cochainsIso₃.


                    Alias of groupCohomology.cochainsMap_f_3_comp_cochainsIso₃.

                    @[deprecated groupCohomology.map (since := "2025-06-09")]
                    def groupCohomology.H0Map {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (n : ) :

                    Given a group homomorphism f : G →* H and a representation morphism φ : Res(f)(A) ⟶ B, this is induced map Aᴴ ⟶ Bᴳ.

                    Equations
                    Instances For
                      @[deprecated groupCohomology.map_id (since := "2025-06-09")]

                      Alias of groupCohomology.map_id.

                      @[deprecated groupCohomology.map_comp (since := "2025-06-09")]
                      theorem groupCohomology.H0Map_comp {k : Type u} [CommRing k] {G H K : Type u} [Group G] [Group H] [Group K] {A : Rep k K} {B : Rep k H} {C : Rep k G} (f : H →* K) (g : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (ψ : (Action.res (ModuleCat k) g).obj B C) (n : ) :

                      Alias of groupCohomology.map_comp.

                      @[deprecated groupCohomology.map_id_comp (since := "2025-06-09")]
                      theorem groupCohomology.H0Map_id_comp {k G : Type u} [CommRing k] [Group G] {A B C : Rep k G} (φ : A B) (ψ : B C) (n : ) :

                      Alias of groupCohomology.map_id_comp.

                      @[deprecated groupCohomology.map_H0Iso_hom_f (since := "2025-06-09")]

                      Alias of groupCohomology.map_H0Iso_hom_f.

                      @[deprecated groupCohomology.map_id_comp_H0Iso_hom (since := "2025-06-09")]

                      Alias of groupCohomology.map_id_comp_H0Iso_hom.

                      @[deprecated groupCohomology.mono_map_0_of_mono (since := "2025-06-09")]

                      Alias of groupCohomology.mono_map_0_of_mono.

                      noncomputable def groupCohomology.mapShortComplexH1 {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :

                      Given a group homomorphism f : G →* H and a representation morphism φ : Res(f)(A) ⟶ B, this is the induced map from the short complex A --d₀₁--> Fun(H, A) --d₁₂--> Fun(H × H, A) to B --d₀₁--> Fun(G, B) --d₁₂--> Fun(G × G, B).

                      Equations
                      Instances For
                        @[simp]
                        theorem groupCohomology.mapShortComplexH1_τ₃ {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :
                        @[simp]
                        theorem groupCohomology.mapShortComplexH1_τ₁ {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :
                        @[simp]
                        theorem groupCohomology.mapShortComplexH1_τ₂ {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :
                        @[simp]
                        theorem groupCohomology.mapShortComplexH1_zero {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) :
                        theorem groupCohomology.mapShortComplexH1_comp {k : Type u} [CommRing k] {G H K : Type u} [Group G] [Group H] [Group K] {A : Rep k K} {B : Rep k H} {C : Rep k G} (f : H →* K) (g : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (ψ : (Action.res (ModuleCat k) g).obj B C) :
                        @[reducible, inline]
                        noncomputable abbrev groupCohomology.mapCocycles₁ {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :

                        Given a group homomorphism f : G →* H and a representation morphism φ : Res(f)(A) ⟶ B, this is induced map Z¹(H, A) ⟶ Z¹(G, B).

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          @[deprecated groupCohomology.mapCocycles₁ (since := "2025-06-25")]
                          def groupCohomology.mapOneCocycles {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :

                          Alias of groupCohomology.mapCocycles₁.


                          Given a group homomorphism f : G →* H and a representation morphism φ : Res(f)(A) ⟶ B, this is induced map Z¹(H, A) ⟶ Z¹(G, B).

                          Equations
                          Instances For
                            @[deprecated groupCohomology.mapCocycles₁_comp_i (since := "2025-06-25")]

                            Alias of groupCohomology.mapCocycles₁_comp_i.

                            @[simp]
                            theorem groupCohomology.coe_mapCocycles₁ {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (x : (ModuleCat.of k (cocycles₁ A))) :
                            @[deprecated groupCohomology.coe_mapCocycles₁ (since := "2025-06-25")]
                            theorem groupCohomology.coe_mapOneCocycles {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (x : (ModuleCat.of k (cocycles₁ A))) :

                            Alias of groupCohomology.coe_mapCocycles₁.

                            @[deprecated groupCohomology.cocyclesMap_comp_isoCocycles₁_hom (since := "2025-06-25")]

                            Alias of groupCohomology.cocyclesMap_comp_isoCocycles₁_hom.

                            @[simp]
                            theorem groupCohomology.mapCocycles₁_one {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (φ : (Action.res (ModuleCat k) 1).obj A B) :
                            @[deprecated groupCohomology.mapCocycles₁_one (since := "2025-06-25")]
                            theorem groupCohomology.mapOneCocycles_one {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (φ : (Action.res (ModuleCat k) 1).obj A B) :

                            Alias of groupCohomology.mapCocycles₁_one.

                            @[deprecated groupCohomology.map (since := "2025-06-09")]
                            def groupCohomology.H1Map {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (n : ) :

                            Given a group homomorphism f : G →* H and a representation morphism φ : Res(f)(A) ⟶ B, this is induced map H¹(H, A) ⟶ H¹(G, B).

                            Equations
                            Instances For
                              @[deprecated groupCohomology.map_id (since := "2025-6-09")]

                              Alias of groupCohomology.map_id.

                              @[deprecated groupCohomology.map_comp (since := "2025-06-09")]
                              theorem groupCohomology.H1Map_comp {k : Type u} [CommRing k] {G H K : Type u} [Group G] [Group H] [Group K] {A : Rep k K} {B : Rep k H} {C : Rep k G} (f : H →* K) (g : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (ψ : (Action.res (ModuleCat k) g).obj B C) (n : ) :

                              Alias of groupCohomology.map_comp.

                              @[deprecated groupCohomology.map_id_comp (since := "2025-06-09")]
                              theorem groupCohomology.H1Map_id_comp {k G : Type u} [CommRing k] [Group G] {A B C : Rep k G} (φ : A B) (ψ : B C) (n : ) :

                              Alias of groupCohomology.map_id_comp.

                              @[simp]
                              theorem groupCohomology.H1π_comp_map {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :
                              @[deprecated groupCohomology.H1π_comp_map (since := "2025-06-12")]
                              theorem groupCohomology.H1π_comp_H1Map {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :

                              Alias of groupCohomology.H1π_comp_map.

                              @[simp]
                              theorem groupCohomology.map_1_one {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (φ : (Action.res (ModuleCat k) 1).obj A B) :
                              map 1 φ 1 = 0
                              @[deprecated groupCohomology.map_1_one (since := "2025-06-09")]
                              theorem groupCohomology.H1Map_one {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (φ : (Action.res (ModuleCat k) 1).obj A B) :
                              map 1 φ 1 = 0

                              Alias of groupCohomology.map_1_one.

                              noncomputable def groupCohomology.H1InfRes {k G : Type u} [CommRing k] [Group G] (A : Rep k G) (S : Subgroup G) [S.Normal] :

                              The short complex H¹(G ⧸ S, A^S) ⟶ H¹(G, A) ⟶ H¹(S, A).

                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For
                                @[simp]
                                @[simp]
                                theorem groupCohomology.H1InfRes_X₁ {k G : Type u} [CommRing k] [Group G] (A : Rep k G) (S : Subgroup G) [S.Normal] :
                                @[simp]
                                theorem groupCohomology.H1InfRes_X₂ {k G : Type u} [CommRing k] [Group G] (A : Rep k G) (S : Subgroup G) [S.Normal] :
                                @[simp]
                                theorem groupCohomology.H1InfRes_X₃ {k G : Type u} [CommRing k] [Group G] (A : Rep k G) (S : Subgroup G) [S.Normal] :

                                The inflation map H¹(G ⧸ S, A^S) ⟶ H¹(G, A) is a monomorphism.

                                theorem groupCohomology.H1InfRes_exact {k G : Type u} [CommRing k] [Group G] (A : Rep k G) (S : Subgroup G) [S.Normal] :

                                Given a G-representation A and a normal subgroup S ≤ G, the short complex H¹(G ⧸ S, A^S) ⟶ H¹(G, A) ⟶ H¹(S, A) is exact.

                                noncomputable def groupCohomology.mapShortComplexH2 {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :

                                Given a group homomorphism f : G →* H and a representation morphism φ : Res(f)(A) ⟶ B, this is the induced map from the short complex Fun(H, A) --d₁₂--> Fun(H × H, A) --d₂₃--> Fun(H × H × H, A) to Fun(G, B) --d₁₂--> Fun(G × G, B) --d₂₃--> Fun(G × G × G, B).

                                Equations
                                Instances For
                                  @[simp]
                                  theorem groupCohomology.mapShortComplexH2_τ₃ {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :
                                  @[simp]
                                  theorem groupCohomology.mapShortComplexH2_τ₂ {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :
                                  @[simp]
                                  theorem groupCohomology.mapShortComplexH2_τ₁ {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :
                                  @[simp]
                                  theorem groupCohomology.mapShortComplexH2_zero {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) :
                                  theorem groupCohomology.mapShortComplexH2_comp {k : Type u} [CommRing k] {G H K : Type u} [Group G] [Group H] [Group K] {A : Rep k K} {B : Rep k H} {C : Rep k G} (f : H →* K) (g : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (ψ : (Action.res (ModuleCat k) g).obj B C) :
                                  @[reducible, inline]
                                  noncomputable abbrev groupCohomology.mapCocycles₂ {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :

                                  Given a group homomorphism f : G →* H and a representation morphism φ : Res(f)(A) ⟶ B, this is induced map Z²(H, A) ⟶ Z²(G, B).

                                  Equations
                                  • One or more equations did not get rendered due to their size.
                                  Instances For
                                    @[deprecated groupCohomology.mapCocycles₂ (since := "2025-06-25")]
                                    def groupCohomology.mapTwoCocycles {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :

                                    Alias of groupCohomology.mapCocycles₂.


                                    Given a group homomorphism f : G →* H and a representation morphism φ : Res(f)(A) ⟶ B, this is induced map Z²(H, A) ⟶ Z²(G, B).

                                    Equations
                                    Instances For
                                      @[deprecated groupCohomology.mapCocycles₂_comp_i (since := "2025-06-25")]

                                      Alias of groupCohomology.mapCocycles₂_comp_i.

                                      @[simp]
                                      theorem groupCohomology.coe_mapCocycles₂ {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (x : (ModuleCat.of k (cocycles₂ A))) :
                                      @[deprecated groupCohomology.coe_mapCocycles₂ (since := "2025-06-25")]
                                      theorem groupCohomology.coe_mapTwoCocycles {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (x : (ModuleCat.of k (cocycles₂ A))) :

                                      Alias of groupCohomology.coe_mapCocycles₂.

                                      @[deprecated groupCohomology.cocyclesMap_comp_isoCocycles₂_hom (since := "2025-06-25")]

                                      Alias of groupCohomology.cocyclesMap_comp_isoCocycles₂_hom.

                                      @[deprecated groupCohomology.map (since := "2025-06-09")]
                                      def groupCohomology.H2Map {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (n : ) :

                                      Given a group homomorphism f : G →* H and a representation morphism φ : Res(f)(A) ⟶ B, this is induced map H²(H, A) ⟶ H²(G, B).

                                      Equations
                                      Instances For
                                        @[deprecated groupCohomology.map_id (since := "2025-06-09")]

                                        Alias of groupCohomology.map_id.

                                        @[deprecated groupCohomology.map_comp (since := "2025-06-09")]
                                        theorem groupCohomology.H2Map_comp {k : Type u} [CommRing k] {G H K : Type u} [Group G] [Group H] [Group K] {A : Rep k K} {B : Rep k H} {C : Rep k G} (f : H →* K) (g : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) (ψ : (Action.res (ModuleCat k) g).obj B C) (n : ) :

                                        Alias of groupCohomology.map_comp.

                                        @[deprecated groupCohomology.map_id_comp (since := "2025-06-09")]
                                        theorem groupCohomology.H2Map_id_comp {k G : Type u} [CommRing k] [Group G] {A B C : Rep k G} (φ : A B) (ψ : B C) (n : ) :

                                        Alias of groupCohomology.map_id_comp.

                                        @[simp]
                                        theorem groupCohomology.H2π_comp_map {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :
                                        @[deprecated groupCohomology.H2π_comp_map (since := "2025-06-12")]
                                        theorem groupCohomology.H2π_comp_H2Map {k G H : Type u} [CommRing k] [Group G] [Group H] {A : Rep k H} {B : Rep k G} (f : G →* H) (φ : (Action.res (ModuleCat k) f).obj A B) :

                                        Alias of groupCohomology.H2π_comp_map.

                                        The functor sending a representation to its complex of inhomogeneous cochains.

                                        Equations
                                        • One or more equations did not get rendered due to their size.
                                        Instances For
                                          @[simp]
                                          theorem groupCohomology.cochainsFunctor_map (k G : Type u) [CommRing k] [Group G] {X✝ Y✝ : Rep k G} (f : X✝ Y✝) :
                                          noncomputable def groupCohomology.functor (k G : Type u) [CommRing k] [Group G] (n : ) :

                                          The functor sending a G-representation A to Hⁿ(G, A).

                                          Equations
                                          • One or more equations did not get rendered due to their size.
                                          Instances For
                                            @[simp]
                                            theorem groupCohomology.functor_obj (k G : Type u) [CommRing k] [Group G] (n : ) (A : Rep k G) :
                                            @[simp]
                                            theorem groupCohomology.functor_map (k G : Type u) [CommRing k] [Group G] (n : ) {X✝ Y✝ : Rep k G} (φ : X✝ Y✝) :
                                            (functor k G n).map φ = map (MonoidHom.id G) φ n