Documentation

Mathlib.RingTheory.HopfAlgebra.MonoidAlgebra

The Hopf algebra structure on group algebras #

Given a group G, a commutative semiring R and an R-Hopf algebra A, this file collects results about the R-Hopf algebra instance on A[G], building upon results in Mathlib/RingTheory/Bialgebra/MonoidAlgebra.lean about the bialgebra structure.

Main definitions #

@[simp]
theorem MonoidAlgebra.antipode_single {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [HopfAlgebra R A] {G : Type u_3} [Group G] (g : G) (a : A) :
instance MonoidAlgebra.instHopfAlgebra {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [HopfAlgebra R A] {G : Type u_3} [Group G] :
Equations
Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem AddMonoidAlgebra.antipode_single {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [HopfAlgebra R A] {G : Type u_3} [AddGroup G] (g : G) (a : A) :
instance AddMonoidAlgebra.instHopfAlgebra {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [HopfAlgebra R A] {G : Type u_3} [AddGroup G] :
Equations
@[simp]
theorem LaurentPolynomial.antipode_T {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [HopfAlgebra R A] (n : ) :
@[simp]
theorem LaurentPolynomial.antipode_C_mul_T {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [HopfAlgebra R A] (a : A) (n : ) :