noncomputable def
LegendreSymbol.χ
{F : Type u_1}
[Field F]
[Fintype F]
(a : F)
(q : ℕ)
(field_cardinality : Fintype.card F = q)
(q_prime_power : IsPrimePow q)
(q_mod_4_congruent_3 : q % 4 = 3)
:
F
χ(a) is the quadratic character of a in the finite field F with q elements, where q is a prime congruent to 3 modulo 4.
This function was added, since Mathlib.NumberTheory.LegendreSymbol.Basic is restricted to ℤ.
Paper definition at chapter 3.1.
Equations
- LegendreSymbol.χ a q field_cardinality q_prime_power q_mod_4_congruent_3 = a ^ ((Fintype.card F - 1) / 2)
Instances For
theorem
LegendreSymbol.χ_a_zero_eq_zero
{F : Type u_1}
[Field F]
[Fintype F]
(a : F)
(a_eq_zero : a = 0)
(q : ℕ)
(field_cardinality : Fintype.card F = q)
(q_prime_power : IsPrimePow q)
(q_mod_4_congruent_3 : q % 4 = 3)
:
theorem
LegendreSymbol.χ_a_ne_zero
{F : Type u_1}
[Field F]
[Fintype F]
(a : F)
(a_nonzero : a ≠ 0)
(q : ℕ)
(field_cardinality : Fintype.card F = q)
(q_prime_power : IsPrimePow q)
(q_mod_4_congruent_3 : q % 4 = 3)
:
theorem
LegendreSymbol.neg_χ_a_ne_χ_a
{F : Type u_1}
[Field F]
[Fintype F]
(a : F)
(a_nonzero : a ≠ 0)
(q : ℕ)
(field_cardinality : Fintype.card F = q)
(q_prime_power : IsPrimePow q)
(q_mod_4_congruent_3 : q % 4 = 3)
:
theorem
LegendreSymbol.χ_a_eq_one
{F : Type u_1}
[Field F]
[Fintype F]
(a : F)
(a_nonzero : a ≠ 0)
(a_square : IsSquare a)
(q : ℕ)
(field_cardinality : Fintype.card F = q)
(q_prime_power : IsPrimePow q)
(q_mod_4_congruent_3 : q % 4 = 3)
:
theorem
LegendreSymbol.χ_of_a_pow_two_eq_one
{F : Type u_1}
[Field F]
[Fintype F]
(a : F)
(a_nonzero : a ≠ 0)
(q : ℕ)
(field_cardinality : Fintype.card F = q)
(q_prime_power : IsPrimePow q)
(q_mod_4_congruent_3 : q % 4 = 3)
:
theorem
LegendreSymbol.χ_of_a_eq_neg_one
{F : Type u_1}
[Field F]
[Fintype F]
(a : F)
(a_nonzero : a ≠ 0)
(a_nonsquare : ¬IsSquare a)
(q : ℕ)
(field_cardinality : Fintype.card F = q)
(q_prime_power : IsPrimePow q)
(q_mod_4_congruent_3 : q % 4 = 3)
:
theorem
LegendreSymbol.χ_of_neg_one_eq_neg_one
{F : Type u_1}
[Field F]
[Fintype F]
(q : ℕ)
(field_cardinality : Fintype.card F = q)
(q_prime_power : IsPrimePow q)
(q_mod_4_congruent_3 : q % 4 = 3)
:
theorem
LegendreSymbol.χ_of_χ_of_a_eq_χ_of_a
{F : Type u_1}
[Field F]
[Fintype F]
(a : F)
(q : ℕ)
(field_cardinality : Fintype.card F = q)
(q_prime_power : IsPrimePow q)
(q_mod_4_congruent_3 : q % 4 = 3)
:
theorem
LegendreSymbol.χ_of_a_mul_b_eq_χ_of_a_mul_χ_of_b
{F : Type u_1}
[Field F]
[Fintype F]
(a b : F)
(q : ℕ)
(field_cardinality : Fintype.card F = q)
(q_prime_power : IsPrimePow q)
(q_mod_4_congruent_3 : q % 4 = 3)
:
theorem
LegendreSymbol.χ_of_one_over_a_eq_χ_a
{F : Type u_1}
[Field F]
[Fintype F]
(a : F)
(a_non_zero : a ≠ 0)
(q : ℕ)
(field_cardinality : Fintype.card F = q)
(q_prime_power : IsPrimePow q)
(q_mod_4_congruent_3 : q % 4 = 3)
:
theorem
LegendreSymbol.χ_of_one_over_a_eq_one_over_χ_a
{F : Type u_1}
[Field F]
[Fintype F]
(a : F)
(a_non_zero : a ≠ 0)
(q : ℕ)
(field_cardinality : Fintype.card F = q)
(q_prime_power : IsPrimePow q)
(q_mod_4_congruent_3 : q % 4 = 3)
:
theorem
LegendreSymbol.one_over_χ_of_a_eq_χ_a
{F : Type u_1}
[Field F]
[Fintype F]
(a : F)
(q : ℕ)
(field_cardinality : Fintype.card F = q)
(q_prime_power : IsPrimePow q)
(q_mod_4_congruent_3 : q % 4 = 3)
: