Long exact sequence in group cohomology #
Given a commutative ring k
and a group G
, this file shows that a short exact sequence of
k
-linear G
-representations 0 ⟶ X₁ ⟶ X₂ ⟶ X₃ ⟶ 0
induces a short exact sequence of
complexes
0 ⟶ inhomogeneousCochains X₁ ⟶ inhomogeneousCochains X₂ ⟶ inhomogeneousCochains X₃ ⟶ 0
.
Since the cohomology of inhomogeneousCochains Xᵢ
is the group cohomology of Xᵢ
, this allows us
to specialize API about long exact sequences to group cohomology.
Main definitions #
groupCohomology.δ hX i j hij
: the connecting homomorphismHⁱ(G, X₃) ⟶ Hʲ(G, X₁)
associated to an exact sequence0 ⟶ X₁ ⟶ X₂ ⟶ X₃ ⟶ 0
of representations.
The short complex Hⁱ(G, X₃) ⟶ Hʲ(G, X₁) ⟶ Hʲ(G, X₂)
associated to an exact
sequence of representations 0 ⟶ X₁ ⟶ X₂ ⟶ X₃ ⟶ 0
.
Equations
- groupCohomology.mapShortComplex₁ hX hij = (HomologicalComplex.HomologySequence.snakeInput ⋯ i j hij).L₂'
Instances For
The short complex Hⁱ(G, X₁) ⟶ Hⁱ(G, X₂) ⟶ Hⁱ(G, X₃)
associated to a short complex of
representations X₁ ⟶ X₂ ⟶ X₃
.
Equations
- groupCohomology.mapShortComplex₂ X i = X.map (groupCohomology.functor k G i)
Instances For
The short complex Hⁱ(G, X₂) ⟶ Hⁱ(G, X₃) ⟶ Hʲ(G, X₁)
.
Equations
- groupCohomology.mapShortComplex₃ hX hij = (HomologicalComplex.HomologySequence.snakeInput ⋯ i j hij).L₁'
Instances For
Exactness of Hⁱ(G, X₃) ⟶ Hʲ(G, X₁) ⟶ Hʲ(G, X₂)
.
Exactness of Hⁱ(G, X₁) ⟶ Hⁱ(G, X₂) ⟶ Hⁱ(G, X₃)
.
Exactness of Hⁱ(G, X₂) ⟶ Hⁱ(G, X₃) ⟶ Hʲ(G, X₁)
.
The connecting homomorphism Hⁱ(G, X₃) ⟶ Hʲ(G, X₁)
associated to an exact sequence
0 ⟶ X₁ ⟶ X₂ ⟶ X₃ ⟶ 0
of representations.
Equations
- groupCohomology.δ hX i j hij = ⋯.δ i j hij
Instances For
Given an exact sequence of G
-representations 0 ⟶ X₁ ⟶f X₂ ⟶g X₃ ⟶ 0
, this expresses an
n + 1
-cochain x : Gⁿ⁺¹ → X₁
such that f ∘ x ∈ Bⁿ⁺¹(G, X₂)
as a cocycle.