Documentation

Mathlib.RepresentationTheory.Homological.GroupCohomology.LongExactSequence

Long exact sequence in group cohomology #

Given a commutative ring k and a group G, this file shows that a short exact sequence of k-linear G-representations 0 ⟶ X₁ ⟶ X₂ ⟶ X₃ ⟶ 0 induces a short exact sequence of complexes 0 ⟶ inhomogeneousCochains X₁ ⟶ inhomogeneousCochains X₂ ⟶ inhomogeneousCochains X₃ ⟶ 0.

Since the cohomology of inhomogeneousCochains Xᵢ is the group cohomology of Xᵢ, this allows us to specialize API about long exact sequences to group cohomology.

Main definitions #

@[reducible, inline]
noncomputable abbrev groupCohomology.mapShortComplex₁ {k G : Type u} [CommRing k] [Group G] {X : CategoryTheory.ShortComplex (Rep k G)} (hX : X.ShortExact) {i j : } (hij : i + 1 = j) :

The short complex Hⁱ(G, X₃) ⟶ Hʲ(G, X₁) ⟶ Hʲ(G, X₂) associated to an exact sequence of representations 0 ⟶ X₁ ⟶ X₂ ⟶ X₃ ⟶ 0.

Equations
Instances For
    @[reducible, inline]

    The short complex Hⁱ(G, X₁) ⟶ Hⁱ(G, X₂) ⟶ Hⁱ(G, X₃) associated to a short complex of representations X₁ ⟶ X₂ ⟶ X₃.

    Equations
    Instances For
      @[reducible, inline]
      noncomputable abbrev groupCohomology.mapShortComplex₃ {k G : Type u} [CommRing k] [Group G] {X : CategoryTheory.ShortComplex (Rep k G)} (hX : X.ShortExact) {i j : } (hij : i + 1 = j) :

      The short complex Hⁱ(G, X₂) ⟶ Hⁱ(G, X₃) ⟶ Hʲ(G, X₁).

      Equations
      Instances For
        theorem groupCohomology.mapShortComplex₁_exact {k G : Type u} [CommRing k] [Group G] {X : CategoryTheory.ShortComplex (Rep k G)} (hX : X.ShortExact) {i j : } (hij : i + 1 = j) :

        Exactness of Hⁱ(G, X₃) ⟶ Hʲ(G, X₁) ⟶ Hʲ(G, X₂).

        Exactness of Hⁱ(G, X₁) ⟶ Hⁱ(G, X₂) ⟶ Hⁱ(G, X₃).

        theorem groupCohomology.mapShortComplex₃_exact {k G : Type u} [CommRing k] [Group G] {X : CategoryTheory.ShortComplex (Rep k G)} (hX : X.ShortExact) {i j : } (hij : i + 1 = j) :

        Exactness of Hⁱ(G, X₂) ⟶ Hⁱ(G, X₃) ⟶ Hʲ(G, X₁).

        @[reducible, inline]
        noncomputable abbrev groupCohomology.δ {k G : Type u} [CommRing k] [Group G] {X : CategoryTheory.ShortComplex (Rep k G)} (hX : X.ShortExact) (i j : ) (hij : i + 1 = j) :

        The connecting homomorphism Hⁱ(G, X₃) ⟶ Hʲ(G, X₁) associated to an exact sequence 0 ⟶ X₁ ⟶ X₂ ⟶ X₃ ⟶ 0 of representations.

        Equations
        Instances For
          @[reducible, inline]
          noncomputable abbrev groupCohomology.cocyclesMkOfCompEqD {k G : Type u} [CommRing k] [Group G] {X : CategoryTheory.ShortComplex (Rep k G)} (hX : X.ShortExact) {i j : } {y : (Fin iG)X.X₂.V} {x : (Fin jG)X.X₁.V} (hx : (CategoryTheory.ConcreteCategory.hom X.f.hom) x = (CategoryTheory.ConcreteCategory.hom ((inhomogeneousCochains X.X₂).d i j)) y) :
          (cocycles X.X₁ j)

          Given an exact sequence of G-representations 0 ⟶ X₁ ⟶f X₂ ⟶g X₃ ⟶ 0, this expresses an n + 1-cochain x : Gⁿ⁺¹ → X₁ such that f ∘ x ∈ Bⁿ⁺¹(G, X₂) as a cocycle.

          Equations
          Instances For
            @[deprecated groupCohomology.mem_cocycles₁_of_comp_eq_d₀₁ (since := "2025-07-02")]

            Alias of groupCohomology.mem_cocycles₁_of_comp_eq_d₀₁.

            @[deprecated groupCohomology.mem_cocycles₂_of_comp_eq_d₁₂ (since := "2025-07-02")]

            Alias of groupCohomology.mem_cocycles₂_of_comp_eq_d₁₂.